Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EBioMedicine ; 76: 103856, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1894987

ABSTRACT

BACKGROUND: Many repurposed drugs have progressed rapidly to Phase 2 and 3 trials in COVID19 without characterisation of Pharmacokinetics /Pharmacodynamics including safety data. One such drug is nafamostat mesylate. METHODS: We present the findings of a phase Ib/IIa open label, platform randomised controlled trial of intravenous nafamostat in hospitalised patients with confirmed COVID-19 pneumonitis. Patients were assigned randomly to standard of care (SoC), nafamostat or an alternative therapy. Nafamostat was administered as an intravenous infusion at a dose of 0.2 mg/kg/h for a maximum of seven days. The analysis population included those who received any dose of the trial drug and all patients randomised to SoC. The primary outcomes of our trial were the safety and tolerability of intravenous nafamostat as an add on therapy for patients hospitalised with COVID-19 pneumonitis. FINDINGS: Data is reported from 42 patients, 21 of which were randomly assigned to receive intravenous nafamostat. 86% of nafamostat-treated patients experienced at least one AE compared to 57% of the SoC group. The nafamostat group were significantly more likely to experience at least one AE (posterior mean odds ratio 5.17, 95% credible interval (CI) 1.10 - 26.05) and developed significantly higher plasma creatinine levels (posterior mean difference 10.57 micromol/L, 95% CI 2.43-18.92). An average longer hospital stay was observed in nafamostat patients, alongside a lower rate of oxygen free days (rate ratio 0.55-95% CI 0.31-0.99, respectively). There were no other statistically significant differences in endpoints between nafamostat and SoC. PK data demonstrated that intravenous nafamostat was rapidly broken down to inactive metabolites. We observed no significant anticoagulant effects in thromboelastometry. INTERPRETATION: In hospitalised patients with COVID-19, we did not observe evidence of anti-inflammatory, anticoagulant or antiviral activity with intravenous nafamostat, and there were additional adverse events. FUNDING: DEFINE was funded by LifeArc (an independent medical research charity) under the STOPCOVID award to the University of Edinburgh. We also thank the Oxford University COVID-19 Research Response Fund (BRD00230).


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Benzamidines/therapeutic use , COVID-19 Drug Treatment , Guanidines/therapeutic use , Administration, Intravenous , Adult , Aged , Aged, 80 and over , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Benzamidines/adverse effects , Benzamidines/pharmacokinetics , Biomarkers/blood , Biomarkers/metabolism , COVID-19/mortality , COVID-19/virology , Drug Administration Schedule , Female , Guanidines/adverse effects , Guanidines/pharmacokinetics , Half-Life , Humans , Immunophenotyping , Kaplan-Meier Estimate , Male , Middle Aged , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Treatment Outcome , Viral Load
2.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1715398

ABSTRACT

The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.


Subject(s)
Anhedonia/physiology , Cyclooxygenase 2/metabolism , Hippocampus/metabolism , Stress, Psychological/metabolism , Anhedonia/drug effects , Animals , Antidepressive Agents/pharmacology , Celecoxib/pharmacology , Citalopram/pharmacology , Depression/drug therapy , Depression/metabolism , Hindlimb Suspension/physiology , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Psychological/drug therapy , Swimming/physiology
3.
J Neuroinflammation ; 19(1): 8, 2022 Jan 06.
Article in English | MEDLINE | ID: covidwho-1613238

ABSTRACT

BACKGROUND: The serine protease inhibitor nafamostat has been proposed as a treatment for COVID-19, by inhibiting TMPRSS2-mediated viral cell entry. Nafamostat has been shown to have other, immunomodulatory effects, which may be beneficial for treatment, however animal models of ssRNA virus infection are lacking. In this study, we examined the potential of the dual TLR7/8 agonist R848 to mimic the host response to an ssRNA virus infection and the associated behavioural response. In addition, we evaluated the anti-inflammatory effects of nafamostat in this model. METHODS: CD-1 mice received an intraperitoneal injection of R848 (200 µg, prepared in DMSO, diluted 1:10 in saline) or diluted DMSO alone, and an intravenous injection of either nafamostat (100 µL, 3 mg/kg in 5% dextrose) or 5% dextrose alone. Sickness behaviour was determined by temperature, food intake, sucrose preference test, open field and forced swim test. Blood and fresh liver, lung and brain were collected 6 h post-challenge to measure markers of peripheral and central inflammation by blood analysis, immunohistochemistry and qPCR. RESULTS: R848 induced a robust inflammatory response, as evidenced by increased expression of TNF, IFN-γ, CXCL1 and CXCL10 in the liver, lung and brain, as well as a sickness behaviour phenotype. Exogenous administration of nafamostat suppressed the hepatic inflammatory response, significantly reducing TNF and IFN-γ expression, but had no effect on lung or brain cytokine production. R848 administration depleted circulating leukocytes, which was restored by nafamostat treatment. CONCLUSIONS: Our data indicate that R848 administration provides a useful model of ssRNA virus infection, which induces inflammation in the periphery and CNS, and virus infection-like illness. In turn, we show that nafamostat has a systemic anti-inflammatory effect in the presence of the TLR7/8 agonist. Therefore, the results indicate that nafamostat has anti-inflammatory actions, beyond its ability to inhibit TMPRSS2, that might potentiate its anti-viral actions in pathologies such as COVID-19.


Subject(s)
Benzamidines , Guanidines , Inflammation/drug therapy , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors , Toll-Like Receptor 7/immunology , Virus Diseases/drug therapy , Animals , Benzamidines/pharmacology , Benzamidines/therapeutic use , COVID-19/complications , Guanidines/pharmacology , Guanidines/therapeutic use , Illness Behavior/drug effects , Imidazoles/administration & dosage , Imidazoles/immunology , Inflammation/metabolism , Inflammation/virology , Male , Mice , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Toll-Like Receptor 7/agonists , Virus Diseases/metabolism , Virus Diseases/virology , COVID-19 Drug Treatment
4.
Front Cell Neurosci ; 15: 749595, 2021.
Article in English | MEDLINE | ID: covidwho-1480528

ABSTRACT

The COVID-19 pandemic imposed a series of behavioral changes that resulted in increased social isolation and a more sedentary life for many across all age groups, but, above all, for the elderly population who are the most vulnerable to infections and chronic neurodegenerative diseases. Systemic inflammatory responses are known to accelerate neurodegenerative disease progression, which leads to permanent damage, loss of brain function, and the loss of autonomy for many aged people. During the COVID-19 pandemic, a spectrum of inflammatory responses was generated in affected individuals, and it is expected that the elderly patients with chronic neurodegenerative diseases who survived SARSCoV-2 infection, it will be found, sooner or later, that there is a worsening of their neurodegenerative conditions. Using mouse prion disease as a model for chronic neurodegeneration, we review the effects of social isolation, sedentary living, and viral infection on the disease progression with a focus on sickness behavior and on the responses of microglia and astrocytes. Focusing on aging, we discuss the cellular and molecular mechanisms related to immunosenescence in chronic neurodegenerative diseases and how infections may accelerate their progression.

5.
Trials ; 22(1): 550, 2021 Aug 19.
Article in English | MEDLINE | ID: covidwho-1365379

ABSTRACT

OBJECTIVES: The primary objective is to evaluate the efficacy of camostat to prevent respiratory deterioration in patients with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Secondary objectives include assessment of the ability of camostat to reduce the requirement for Coronavirus disease 2019 (COVID-19) related hospital admission and to reduce the requirement for supplementary oxygen and ventilation as treatment for SARS-CoV-2 infection, to evaluate overall mortality related to COVID-19 and to evaluate the efficacy of camostat by effect on clinical improvement. Research objectives include to assess change in COVID-19 symptom severity, to evaluate the ability of camostat to reduce viral load throughout duration of illness as well as translational research on host and viral genomics, serum antibody production, COVID-19 diagnostics, and validation of laboratory testing methods and biomarkers. TRIAL DESIGN: SPIKE-1 is a randomised, multicentre, prospective, open label, community-based clinical trial. Eligible patients will be randomised 1:1 to the camostat treatment arm and control arm (best supportive care). The trial is designed to include a pilot phase recruiting up to 50 patients in each arm. An initial review at the end of the pilot phase will allow assessment of available data and inform the requirement for any protocol adaptations to include refinement of eligibility criteria to enrich the patient population and sample size calculations. Up to 289 additional patients will be randomised in the continuation phase of the trial. A formal interim analysis will be performed once 50% of the maximum sample size has been recruited PARTICIPANTS: The trial will recruit adults (≥ 18 years) who score moderate to very high risk according to COVID-age risk calculation, with typical symptoms of COVID-19 infection as per Public Health England guidance or equivalent organisations in the UK, Health Protection Scotland, Public Health Wales, Public Health Agency (Northern Ireland) and with evidence of current COVID-19 infection from a validated assay. The trial is being conducted in the UK and patients are recruited through primary care and hospital settings. INTERVENTION AND COMPARATOR: Eligible patients with be randomised to receive either camostat tablets, 200 mg four times daily (qds) for 14 days (treatment arm) or best supportive care (control arm). MAIN OUTCOMES: Primary outcome measure: the rate of hospital admissions requiring supplemental oxygen. Secondary outcome measures include: the rate of COVID-19 related hospital admission in patients with SARS-CoV-2 infection; the number of supplementary oxygen-free days and ventilator-free days measured at 28 days from randomisation; the rate of mortality related to COVID-19 one year from randomisation; the time to worst point on the nine-point category ordinal scale (recommended by the World Health Organization: Coronavirus disease (COVID-2019)) or deterioration of two points or more, within 28 days from randomisation. Research outcomes include the assessment of change in COVID-19 symptom severity on days 1-14 as measured by (1) time to apyrexia (maintained for 48 hrs) by daily self-assessment of temperature, time to improvement (by two points) in peripheral oxygenation saturation defined by daily self-assessment of fingertip peripheral oxygenation saturation levels, (3) assessment of COVID-19 symptoms using the Flu-iiQ questionnaire (determined by app recording and/or daily video call (or phone) consultation and (4) assessment of functional score (where possible) at screening, day 7 and 14. The ability of camostat to reduce viral load throughout duration of illness will be assessed by (1) change in respiratory (oropharyngeal/nasopharyngeal swab RT-PCR) log10 viral load from baseline to Days 7 and 14, (2) change in respiratory (saliva RT-PCR) log10 viral load from baseline to Days 1-14 and (3) change in upper respiratory viral shedding at Day 1 -14 measured as time to clearance of nasal SARS-CoV-2, defined as 2 consecutive negative swabs by qPCR. Additional translational research outcomes include assessment of host and viral genomics, serum antibody production and COVID-19 diagnostics at baseline and on Days 7 and 14. RANDOMISATION: Eligible patients will be randomised using an interactive web response system (IWRS) in a 1:1 ratio to one of two arms: (1) treatment arm or (2) control arm. BLINDING (MASKING): The trial is open-label. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The trial is designed to include a pilot and a continuation phase. Up to 100 patients (randomised 1:1 treatment and control arm) will be recruited in the pilot phase and a maximum of 289 patients (randomised 1:1 treatment and control) will be recruited as part of the continuation phase. The total number of patients recruited will not exceed 389. TRIAL STATUS: Protocol version number v3 25 September 2020. Trial opened to recruitment on 04 August 2020. The authors anticipate recruitment to be completed by October 2021. TRIAL REGISTRATION: EudraCT 2020-002110-41; 18 June 2020 ClinicalTrials.gov NCT04455815 ; 02 July 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). Unpublished PK data provided under confidentiality agreement to the trial Sponsor has been removed from the background section of the protocol to allow for publication of the trial protocol. In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Randomized Controlled Trials as Topic , Spike Glycoprotein, Coronavirus , Esters , Guanidines , Humans , Membrane Fusion , Multicenter Studies as Topic , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL